(B)SM Higgs Boson Production via Gluon Fusion

Timo Schmidt

in collaboration with Michael Spira

University of Freiburg

Buffalo, August 15, 2016

Introduction

Gluon Fusion (Fixed-order calculations)

LO and NLO QCD NNLO and N ^3LO QCD / NLO elw. corrections Dim-6 Operators

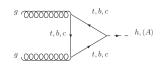
Soft and collinear gluon resummation in Gluon Fusion

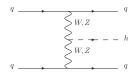
Previous and current work Mass effects and collinear effects Numerical implementation Numerical Results

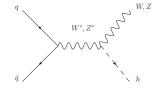
Conclusions

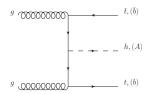
Higgs boson production

At the LHC there are mainly 4 relevant production mechanism for a single SM Higgs h and pseudoscalar Higgs A









UNI

Gluon Fusion: Fixed order calculations

- Leading order (LO)
 - Due to large Yukawa coupling and large gluon luminosities gluon fusion dominant production mechanism in the SM [Georgi et. al. (1978)]
- NLO-calculations (next-to-leading order)
 - ☐ Effective theory in the limit of a heavy top quark [Dawson (1991), Spira et al. (1991)]
 - Massive calculation [Spira et al. (1993,1995), Harlander, Kant (2005), Anastasiou et al. (2007), Aglietti et el. (2007)]

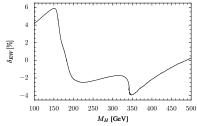
- Increase of the hadronic cross section by about $50-90\% \Rightarrow$ K-factor $K_{\infty}=\frac{\sigma^{NLO}}{\sigma^{LO}}|_{M_t\to\infty}$ huge!
- Effective calculation is in accordance with the full massive calculation of K-factor within $\mathcal{O}(5\%)$ for $M_H = 125 \text{ GeV}$
- lacksquare NLO cross section can be expressed in good approximation by K_{∞} -factor rescaled by massive Born term
- Effective NNLO calculation in the limit $M_t^2 \gg M_H^2$ [Harlander, Kilgore (2001), Anastasiou, Melnikov (2002), Ravindran et al. (2003)]

- \square Further increase of the cross section by about $\approx 30\%$
- ☐ Scale dependence at NNLO reduces by a factor of 2 with respect to NLO

NNLO and N³LO QCD corrections / NLO electroweak corrections

- Massive NNLO calculation only partly available [Harlander et al., Steinhauser et al. (2009)] in asymptotic mass expansion. Mass effects below $\mathcal{O}(1\%)$ in K-factor.
- State-of-the-art calculation at N³LO [Anastasiou et al. (2014,2015,2016), Li et al. (2014)]
 - \Box Soft + virtual approximation or threshold expansion (singular terms in the limit $z \to \infty$) \square Terms originating from collinear region $\sim \ln^m(1-z)$, $0 \le m \le 5$
 - ☐ Quite recently: Full three loop result

 - \square N³LO results lead to a further increase of the cxn by +3.2% for $\mu_R = \mu_F = m_H/2$ in the effective theory approach,
- NLO electroweak corrections $\mathcal{O}(\alpha_s^2\alpha)$ in the completely factorizated scheme $\sigma_{tot} = \sigma_{OCD}(1 + \delta_{elw})$, [Degrassi et al. (2004), Aglietti et al. (2006), Actis et al. (2008, 2009)
- **approximate mixed QCD and elw NNLO corrections** $\mathcal{O}(\alpha_s^3 \alpha)$ [Anastasiou et al. (2009)]



Dim-6 Operators

 Higher-dimension operators of weakly interacting theories up to certain scale Λ generate deviation of the effective Higgs coupling to gluons

$$\mathcal{L}_{\mathrm{eff}} = rac{lpha_{s}}{\pi} \left\{ rac{c_{t}}{12} (1 + \delta) + c_{g}
ight\} G^{a,\mu
u}_{\mu
u} G^{a}_{\mu
u} rac{h}{v}$$

Novel coupling c_g does not receive QCD corrections but develops a RGE as of the trace anomaly $\Theta^{\mu}_{\mu} = [1 + \gamma_m(\alpha_s)]m_t t \bar{t} + \frac{\beta(\alpha_s)}{2\alpha_s}G^{a,\mu\nu}G^{a}_{\mu\nu}\frac{h}{\nu}$ [Adler et al. (1979)]

$$c_g(\mu^2) = c_g(\mu_0^2) \frac{\beta_0 + \beta_1 \frac{\alpha_s(\mu^2)}{\pi} + \beta_2 \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^2}{\beta_0 + \beta_1 \frac{\alpha_s(\mu_0^2)}{\pi} + \beta_2 \left(\frac{\alpha_s(\mu_0^2)}{\pi}\right)^2}$$

Results into a rescaling of the t, b, c Yukawa couplings and effective Hgg coupling [S., Spira (2016), Liebler et al. (2016), Anastasiou et al. (2016)]

Threshold-resummation, part 1

■ Partonic cross sections contain singular plus distributions

$$\mathcal{D}_i = \left[\frac{\ln^i(1-z)}{1-z}\right]_+$$

at every perturbative order

- These logarithmically enhanced terms spoil the convergence of the perturbative expansion in the kinematical region $z \to 1$
- Physical explanation: Near partonic threshold the phase space only permits the emission of soft gluons.
- First observation: Leading Plus distributions show a recurrent pattern [Parisi (1980)] ⇒ Possibility to resum these large contributions

Threshold-resummation, part 2

■ Transformation into Laplace- or Mellin-space N.

$$\sigma_N(m_h^2) = \int_0^1 \mathrm{d}\tau_h \tau_h^{N-1} \sigma(s, m_h^2)$$

- Limit $z \to 1$ corresponds to limit $N \to \infty$
- $\blacksquare \mathcal{D}_i \to c_i \ln^{i+1} N + \mathcal{O}(\ln^i N)$
- Renormalization group method:
 - ☐ Factorization of divergent hard scattering cross section in the soft region into a soft, soft-collinear and hard part
 - ☐ Solution of the RG equations leads to the Sudakov exponentiation [Sterman et al. (1986,1997), Catani et al. (1989)]

$$\begin{split} \hat{\sigma}_{gg \to h} &= \alpha_{S}^{2}(\mu_{R}) C_{gg} \left(\alpha_{S}^{2}(\mu_{R}), \frac{m_{h}^{2}}{\mu_{R}^{2}}, \frac{m_{h}^{2}}{\mu_{F}^{2}} \right) \\ &\times \exp \left[\mathcal{G}_{h} \left(\alpha_{S}^{2}(\mu_{R}), \ln N, \frac{m_{h}^{2}}{\mu_{R}^{2}}, \frac{m_{h}^{2}}{\mu_{F}^{2}} \right) \right] \end{aligned}$$

Threshold resummation in inclusive Higgs production via Gluon-Fusion

Conventional QCD resummation
□ Threshold resummation at NLO+NLL $m_t^2 \gg M_H^2$ [Krämer, Laenen, Spira (1997)]
□ Soft-gluon resummation at NNLO+NNLL in the limit of a heavy top-quark [Catani et al
(2003)], [de Florian, Grazzini (2009)]
☐ Inclusion of finite mass effects in the resummation [de Florian, Grazzini (2012)]
\square Resummation large- x + small- x + approximate N ³ LO [Ball et al., Bonvini et al. (2014)]
☐ Approximate N³LO [deFlorian et al. (2014)]
□ Approx. N³LO [Catani et al. (2014)]
\square N ³ LO+N ³ LL [Bonvini et al. (2015,2016), Anastasiou et al. (2016)]
SCET
□ SCET resummation at NNLO+NNLL [Ahrens et al. (2009)]
□ SCET resummation at N³LO+N³LL [Anastasiou et al. (2016)]
- · · · · · · · · · · · · · · · · · · ·

Inclusion of mass effects into resummed kernel

Soft+virtual gg-channel contains mass dependent NLO contribution $c(\tau_q)$ [de Florian, Grazzini (2012)]

$$\begin{split} &C_{gg}^{(1)}(\tau_q^\phi) = \pi^2 + c_\phi(\tau_q^\phi) + \frac{33 - 2N_F}{6}\log\frac{\mu_R^2}{\mu_F^2} + 6\gamma_E^2 + \frac{\zeta_2}{6} - 6\gamma_E\ln\frac{M_H^2}{\mu_F^2} \\ &c_H(\tau_t^H) \stackrel{\tau_t^H \to \infty}{\to} \frac{11}{2} \;, \tau_t^\phi = \frac{4m_t^2}{m_\phi^2} \end{split}$$

- Real gg-, gq- und qq-channels have the same limit $z \to 1$ as for $m_t \to \infty$ relative to Born term (universal factorization) \Rightarrow mass effects can be included in resummation
- Since no massive NNLO calculation available mass effects at NNLL unknown

Collinear Logarithms

- Universal collinear effects $\ln^k N/N \sim \ln^k (1-z)$ are numerically relevant.
- At NLL they exponentiate together with the constant terms

 conjecture [Krämer, Laenen, Spira (1997)]
- Alternative: Inclusion into constant terms $C_{gg}^{(1)} \to C_{gg}^{(1)} + 2C_A \frac{\ln N}{N}$ [Catani et al. (2001,2003)]
- Alternative approach [S., Spira (2015)]

$$C_{gg}^{(1)} o C_{gg}^{(1)} + 2C_A \frac{\tilde{L}}{N}, C_{gg}^{(2)} o C_{gg}^{(2)} + (48 - N_F) \frac{\tilde{L}^2}{N} \text{ with } \tilde{L} = \ln \frac{N e^{\gamma_E} \mu_F}{M_{\Phi}}$$

- $\hfill\Box$ correctly predicts leading logarithms $((\alpha_s/\pi)^{2n-1} \ln^n N/N)$ as well as subleading logarithms $\ln^2 N/N$ at NNLO and $\ln^4 N/N$ at $N^3 LO$.
- Next-to-eikonal approach [Laenen, Magnea, Stavenga (2008,2015)]
- Physical kernel evolution resums the next-to-soft terms by altering the soft function [Moch, Vogt (2014)]

Minimal prescription

Mellin inversion

$$\sigma^{(\text{res})} = \sigma^{(0)} \int_{C_{MP} - i\infty}^{C_{MP} + i\infty} \frac{dN}{2\pi i} \left(\frac{M_H^2}{s}\right)^{-N+1} f_{g/h_1, N}(\mu_F^2) f_{g/h_2 N}(\mu_F^2)$$

$$\times \hat{\sigma}_{gg \to \phi, N}(\alpha_s(\mu_R^2), M_H^2/\mu_R^2; M_H^2/\mu_F^2)$$

- Minimal Prescription = choosing carefully the integration contour in order to avoid non-perturbative poles
- Necessity for *N*-space PDF's \Rightarrow Fitting linear combinations of $x^{\alpha}(1-x)^{\beta}$ to x-space PDF's for different μ_F and transforming results to *N*-space [de Florian, Vogelsang]
- Alternative: QCD-PEGASUS. Takes PDF's at input scale \(\mu_{F,0} \) in the 9-parameter form and evolves them with DGLAP-equations in Mellin-space up to higher scales

Usage of x-space PDF's

- Parton derivatives / Fake parton luminosities [Kulesza et al. (2002)]
 - ☐ Multiplication of the cross section by one:

$$\begin{split} \sigma^{(\mathrm{res})} &= \sigma^{(0)} \int_{C_{MP} - i\infty}^{C_{MP} + i\infty} \frac{dN}{2\pi i} \, \rho^{-N+1} \\ &\times f_{g/h_1, \, N}(\mu_F^2) \, (N-1)^2 \, f_{g/h_2, \, N}(\mu_F^2) \, (N-1)^2 \, \hat{\sigma}_{gg \to \phi, \, N}/(N-1)^4 \\ &= \sigma^{(0)} \int_{\rho}^1 \frac{\mathrm{d}z}{z} \int_{\rho/z}^1 \frac{\mathrm{d}y}{y} \mathcal{G}^{(2)}(y, \mu_F^2) \mathcal{G}^{(2)}(\frac{\rho}{y \cdot z}, \mu_F^2) \\ &\times \frac{1}{2\pi i} \int_{C_{MP} - i\infty}^{C_{MP} + i\infty} \mathrm{d}z \, z^{-N} \hat{\sigma}_{gg \to \phi, \, N}/(N-1)^4 \end{split}$$

Second derivative

$$\mathcal{G}^{(2)}(x,\mu_F^2) = \frac{\mathrm{d}}{\mathrm{d}x} \left\{ x \frac{\mathrm{d}}{\mathrm{d}x} \left(x g(x,\mu_F^2) \right) \right\}$$

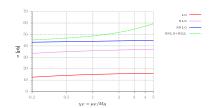
stabilizes numerical integration over the phase space. Good agreement with QCD-PEGASUS.

Matching by including mass effects

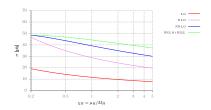
- Improved matching by only incorporating top mass effects in the resummed kernel
 - □ Large double logarithms (DL) $\ln^2 \frac{M_H^2}{m_q^2}$ in the case of bottom and charm quarks \Rightarrow Numerically relevant, no soft gluon dominance
 - \Box For MSSM Higgs DL's of bottom quarks scale with tan $\beta \Rightarrow$ Resummation only relevant for moderate tan $\beta \lesssim 10-15$

$$\begin{split} \sigma_{tt}^{(NNLO+N^3LL)} &= \left[\sigma_{tt}^{(0)} K_{tt,\infty}^{(NNLO)}\right]^{x-space} + \left[\sigma_{tt}^{(0)} K_{tt,\infty}^{(N3LL)} - \sigma_{tt}^{(0)} K_{tt,\infty}^{(NNLO)}\right]^{N-space} \\ &+ \left[\sigma_{t+b+c}^{(NLO)} - \sigma_{tt}^{(0)} K_{tt,\infty}^{(NLO)}\right]^{x-space} \\ &+ \left[\sigma_{tt}^{(0)} K_{tt}^{(NLL)} - \sigma_{tt}^{(0)} K_{tt}^{(NLO)}\right]^{N-space} \\ &- \left[\sigma_{tt}^{(0)} K_{tt,\infty}^{(NLL)} - \sigma_{tt}^{(0)} K_{tt,\infty}^{(NLO)}\right]^{N-space} \end{split}$$

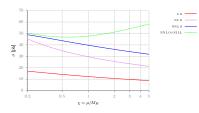
Scale variation: SM Higgs



(a) Scale variation with respect to the factorization scale $\chi_F=\mu_F/M_H$



(b) Scale variation with respect to the renormalization scale $\chi_R = \mu_R/M_H$



(c) Scale variation with identified scales $\chi = \mu/M_H$

Total cross section: SM Higgs

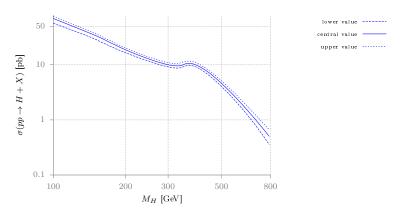
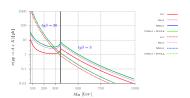
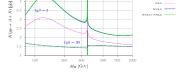


Figure : Total hadronic cross section with uncertainty band due to 7-point scale variation and PDF+ α_S uncertainties according to the PDF4LHC15 recommendations

Pseudoscalar Higgs: Total hadronic cross section and K-Factor

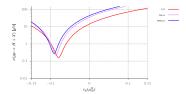




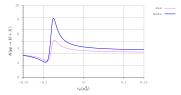
- (a) Total hadr. cxn in the m_h^{mod+} scenario
- (b) K-factor in the m_h^{mod+} scenario
- Resummation effects amount to about 5% for $tg\beta = 3$ and are small for large $tg\beta = 30$.
- Bumbs and spikes at $M_A \sim 2 M_t$ related to $t \bar t$ threshold that generates Coulomb singularity
- Squark loops [Anastasiou et al. (2007), Aglietti et al. (2007)], SUSY-QCD corrections [Anastasiou et al. (2008), Mühlleitner et al. (2010)] and N³LO threshold effects [Ahmed et al. (2015,2016)] not yet included

Dim-6 Operator: Total hadronic cross section and K-Factor

- Novel coupling c_g consistently included at NNLO in HIGLU [Spira et al. (1995)], resummation effects not yet examined.
- SM value recovered for $c_g(\mu_R^2)$ =0.
- Large constructive and destructive effects depending on the value of c_g due to Born term interference.
- Hadronic cross section becomes minimal where c_g cancels the quark-loop contributions.



(a) Total hadr. cxn by variation of the novel coupling $\emph{c}_\emph{g}$



(b) K-factor by variation of the novel coupling $c_{\rm g}$

Conclusions

- Gluon fusion dominant production mechanism over the entire energy spectrum at the LHC
- Higher order corrections in pQCD and elw. theory are sizeable
- Threshold resummation proves to permit insight into higher orders in QCD
- Inclusion of mass effects in resummation turns out to be small
- Collinear effects not negligible
- Matched result at NNLO+N³LL agrees with full N³LO within $\mathcal{O}(2\%)$ for $\mu_R = \mu_F = M_H/2$ for $\overline{\mathrm{MS}}$ -masses (no inclusion of missing mass effects)
- Dim-6 Operator included at NNLO

Thank you for your attention!